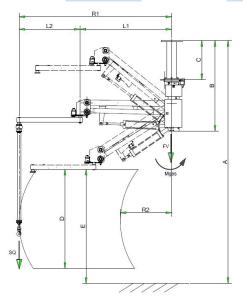
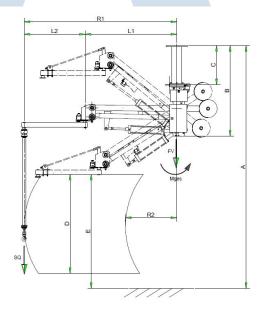

# LIFTRONIC® AIR - CELING/RAIL







## LIFTRONIC® AIR - CELING/RAIL

|                               |      | MODEL EXAMPLES |         |       |         |        |         |
|-------------------------------|------|----------------|---------|-------|---------|--------|---------|
|                               |      | LA080          |         | LA160 |         | LA250  |         |
| SQ* (Max Load capacity)       | Kg   | 80             | 110**** | 160   | 210**** | 250    | 310**** |
| Max protrusion from tool axis | mm   | 300            | -       | 300   | -       | 500    | -       |
| Min Load Capacity             | Kg   | 10             | 10      | 12    | 12      | 15     | 15      |
| L1                            | mm   | 1620           | 1620    | 1635  | 1635    | 1565   | 1565    |
| L2                            | mm   | 1080           | 1080    | 1065  | 1065    | 1040   | 1040    |
| R1                            | mm   | 2700           | 2700    | 2700  | 2700    | 2605   | 2605    |
| R2                            | mm   | 907            | 907     | 935   | 935     | 900    | 900     |
| RH                            | mm   | -              | 715     | -     | 910     | -      | 960     |
| A**                           | mm   | 4293           | 4293    | 4388  | 4388    | 4172   | 4172    |
| B**                           | mm   | 1602.5         | 1602.5  | 1614  | 1614    | 1536.5 | 1536.5  |
| C**                           | mm   | 690            | 690     | 610   | 610     | 480    | 480     |
| D Vertical stoke              | mm   | 1752           | 1752    | 1716  | 1716    | 1451   | 1451    |
| E**                           | mm   | 2007           | 2007    | 2012  | 2012    | 2002   | 2002    |
| Weight                        | Kg   | 290            | 408     | 465   | 620     | 548    | 713     |
| Fv max***                     | daN  | 466            | 663     | 780   | 1050    | 1010   | 1300    |
| Mges max***                   | daNM | 520            | 450     | 957   | 990     | 1410   | 1360    |

Nominal load capacity SQ is determined with a compressed air supply of minimum 6.5 bars.
\*\* Within certain limits, these values can by modified for special client requirements.

\*\*\* Values including the relevant safety factor, as per CNR 10021/85 (Steel structures for lifting equipment) \*\*\*\* With counterweights and reinforcement for arm. The load capacity increase over the nominal load capacity can be used only to counterbalance the weight of the tooling





## **GENERAL TECHNICAL SPECIFICATIONS**

- Air pressure 6.5 bars •
- Power supply 115/230V A/C 50/60Hz •
- Power consumption 100VA •
- **Enclosure protection IP54** •
- Max working temperature 0 to 40 °C •
- Noise level  $< 70 \, dB(A)$

- Lift speed from 15 to 30 m/min
- Main column axis brake
- Intermediate joint axis brake
  - Column rotation 360°
  - Tool axis rotation 550°
  - Slow descent in case of pressure failure



## **GENERAL INFORMATION**

- Balancing type: load preset or self balancing (it depends from the tooling)
- Min. lighting conditions within the working area: 300 600 lux
- Relative humidity rate: 30% to 90% +/- 5%
- Applicable standards:
  - European safety standards 2006/42/CE (Machinery Directive)
    - Safety requirement in directive 2006/95/CE (Low voltage)
    - Safety requirement in directive 2004/108/CE (Electro-magnetic compatibility)

Design standards: - CNR 10021/85 (Steel structures for lifting equipment),

- CNR 10011/86 (Steel products),
- CNR 10028/85 (Aluminium alloy structures for lifting equipment),
- CNR 10029/87 (High-resistance steel products)
- UNI 7670, UNI 7278, DIN 4114, ISO 4304, DIN 1054, FEM/I-12-1970

# SAFETIES

### (when assembled with tooling)

#### The system stops automatically when:

- A communication error is detected (fault inside the cables, fault inside an electronic board...);
- Electric power supply switches off;
- The system controls the balancer's pressures (at different levels) and verify the congruencies between them.
- A fault inside the proportional electric valve is detected;
- A fault inside the proportional pneumatic valve is detected;
- The cylinder pressure is not congruent with required pressure;
- The load is lost/fault avoiding the "traditional" raising quick movement;
- An excessive acceleration is measured (due to faults);
- The STOP button is pressed (without the intervention of programmable electronic boards only electromechanical elements).
- The system also generates warning (without stopping the balancer) in order to shown "out of range" working situations.
- Maximum load limitation by electronic limit (sealed for the maximum load at factory)

#### **Optionals on request:**

- Paint color: other than standard (green RAL 6018)
- Rotating joint on the articulate axis
- Brake for up/down movement

- System lock for the lift capacity
- Steel platform
- Limit switch for the main & intermediate joint axis